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Abstract

A comparative study between two distinct perturbative series expansions for the
pair-creation contact process is presented. In contrast to the ordinary contact
process, whose supercritical series expansions provide accurate estimates for
its critical behaviour, the supercritical approach does not work properly when
applied to the pair-creation process. To circumvent this problem a procedure
is introduced in which one-site creation is added to the pair creation. An
alternative method is the generation of subcritical series expansions which
works even for the case of the pure pair-creation process. In contrast to the
supercritical case, the subcritical series yields estimates that are compatible
with numerical simulations.

PACS numbers: 05.70.Ln, 02.50.Ga, 64.60.Cn

1. Introduction

The critical properties of nonequilibrium systems have attracted attention and have seen a
great development in the last years [1-3]. This may be credited to their resemblance with
critical phenomena occurring in systems in thermodynamic equilibrium. In equilibrium and
nonequilibrium phase transitions there is a singular dependence of the steady-state properties
upon the control parameters, marking a transition between distinct regimes. Other common
features include long-range correlations, well-defined order parameter and singularities
characterized by critical exponents that are grouped in universality classes [4].

Due to the absence of a general theory for the nonequilibrium regime, these properties
are analysed in particular models, trying to form a complete picture. In particular, a class of
simple models used to perform this task is constituted by lattice models with absorbing states.
The presence of an absorbing state is sufficient for breaking the detailed balance condition,
making these models intrinsically irreversible. In the steady-state regime, these models display
a phase transition from an absorbing state to an active state, as the control parameter is varied.
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A very robust universality class for these models is the directed percolation (DP) class.
It describes the critical properties of any system with a phase transition between an absorbing
and an active state characterized by a scalar order parameter, short-range interactions and no
conservation laws [5].

Usually, the tool utilized in the study of these problems is the numerical simulation, but
analytic approaches are also used as an important tool in this task leading, in some cases, to
very precise results. As in other fields of physics, simulational and analytical approaches are
complementary in the study of phase transitions in equilibrium and nonequilibrium systems
[6]. One of these analytical approaches is the series expansion [7] that has provided the most
precise estimates of the DP exponents in one dimension [8]. Inspired by the equilibrium case,
the series for nonequilibrium systems can be either supercritical or subcritical, in analogy with
the high- and low-temperature expansions in equilibrium systems.

A pioneer work that uses series expansions for lattice models with absorbing states was
developed by Dickman and Jensen [7], in their study of the critical properties of the contact
process (CP). The contact process is an icon among the models that display a phase transition
between an absorbing and active state. Initially the CP was proposed as a model for spreading
an epidemic disease [9] and has become the ‘Ising model’ for the DP universality class. Using
subcritical and supercritical series, Dickman and Jensen obtained the critical point and its
associate exponents. Their results indicate that the supercritical case works better than the
subcritical series.

Recently, de Oliveira [10] proposed an alternative approach for generating the subcritical
expansion obtaining critical values comparable to those of the supercritical series [7]. The
difference between the approaches is that in [ 10], the non-perturbated operator (associated with
the annihilation of particles) should be diagonalized, whereas this procedure is not required
for the supercritical series.

In this paper, a comparative study between subcritical and supercritical series expansion
is performed for the pair-creation contact process (PCCP) [11]. Although this model does not
show any surprise concerning the critical properties, since it belongs to the DP universality
class as the ordinary CP, it is interesting for the comparative analysis. We will show that the
original approach for the supercritical series [7] does not work properly, presenting problems
in its construction. Even an alternative version of the model, that would overcome these
problems, does not lead to precise results for the critical point. On the other hand, the
subcritical series gives results, without any manoeuvre, that are comparable to those obtained
by numerical simulations [12].

This paper is organized as follows. In section 2 we present the model and the operator
formalism. In section 3 we show the derivation of the supercritical series, discussing its
problems. In section 4, we attempt to overcome the problem by introducing a modified PCCP
and deriving the supercritical series. In section 5 we present the approach for the subcritical
case and results coming from the Padé analysis for both pure and modified PCCP. Finally, in
section 6 the conclusions and final discussions of this work may be found.

2. The pair-creation contact process and operator formalism

We consider an interacting particle system on a one-dimensional lattice with L sites. The
system evolves in the time according to a Markovian process with local and irreversible rules.
The configurations are described in terms of occupation variables, 1;, with ; = 0, 1 according
to whether the site i is empty or occupied by a particle, respectively. The time evolution of
the probability P(n, t) of a given configuration n = (9, 72, ..., 1) at time ¢ is given by the
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master equation

L
d ) .
o P00 =D {wi@) PO 1) —wi) PO, D), )
where ' = (91, M2, ..., 1 —n;, ..., ny). The transition rate w; () for the PCCP is given by
wi(m) = (1 = 0)Mi—aMi—1 + Nis1Nie2) + 7). (2)

If an empty site has two occupied neighbour sites, then this site becomes occupied with
a transition rate equals to n/2, where n is the number of the pairs of the first neighbours
occupied. If the site is occupied, then it becomes empty with a rate «, independently of its
neighbourhood.

When the lattice is entirely empty, the system is trapped in an absorbing state. However,
for small values of the rate «, an active state can be achieved in the stationary state. In this way,
a continuous phase transition occurs in this model with the critical point localized, according
to simulational results [12], in o, = 0.1341(6).

To develop this operator formalism, we represent the microscopic configurations of the
lattice by the direct product of vectors

) = ) n:)- 3)

The algebra is defined by the creation and annihilation operators for the site i:

Allni) = (1= np)ln; +1), Ailni) = milni — 1). 4)
In this formalism, the state of the system at time 7 may be represented as
W0y =>_P@.0ln). ©)

{n
If we define the projection onto all possible states as
(1=l 6)
{n)

the normalization of the state may be expressed as ( |[{) = 1.
The master equation (1) can be shown to be equivalent to the following time evolution
equation

d
Ellﬂ(t)) = S|y @), @)
where § is the evolution operator, given by
§S=S5,+as,, (8)
where
1 .
=3 (Al — aAl) (Al AAl A+ AL AnAlLAL)) )

is the pair-creation operator and
Sa=Y (A —AlA) (10)

is the annihilation operator.
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3. Supercritical series expansion

By rescaling the time, it is possible to rewrite the evolution operator as
S=V+uW, (11)

where W = §,, V =25, and u = 2a. Since the operator W is associated with the annihilation
process and the creation of particle is present in the operator V, for small values of the
parameter p the creation process is favoured, so that the composition above is convenient for
a supercritical series. The action of each operator, in a general configuration (C), is explicitly
shown by the expressions

r

W) => () —r(©), (12)
i=1
and
P1 P2
V(€)=Y (€ +2) (€)= (p1+2p)(©), (13)

i=1 i=1
where 7 is the occupied sites number, (C;) is obtained replacing a particle at the site i by a
hole, while p; and p, are the number of the empty sites with one and two occupied pairs of
neighbours, respectively. Finally, (C/") is the configuration obtained replacing the hole at the
site i by a particle.

Since we are interested in the steady-states properties, it is convenient to take the Laplace
transform of the state vector, given by

V() = /Ome-s’nb(t)). (14)
Inserting the formal solution given by equation (7), we find

W () = (s = ) 7'1Y(0)). 15)
The stationary state | (00)) = lim,_, o |1 (¢)) may then be found noticing that

[¥(00) = lim |/ (s)). (16)

which is obtained integrating equation (14) by parts. Assuming that |1/ (s)) may be expanded
in powers of & and using equation (15), we have that

V() = 10} + pldn) + (o) + - = (s =V — uW) '[9 (0)). a7
Expanding the operator (s — V — uW)~! in powers of p,

=V == V)l+us—V) "W+l —V)2W?+..1], (18)
and comparing each order in p, we arrive at the expressions:

[P0 = (s = V)" (0), (19)
and

Pa) = (s = V)" WIg, ), (20)
forn # 0.

The action of the operator (s — V)~! on an arbitrary configuration (C) may be found
noticing that

s="1C) =sTHO) + (s = V)T'V©O), 21
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and using expression (13) for the action of the operator V, we get

P1 P2
=WTO =35 @+ =V)"| D CH+2D € |- (22)
i=1 j=1
where s, = 1/(s +¢q) and ¢ = p; +2p,.
The main obstacle to generate the standard supercritical series for this model is due the
action of the operator (s — V)~! over a configuration (P) without pairs of particles, whose
result is given by

1
(s—=V)'(P) = ~(P). (23)

The successive action of (s — V) ™! over the configuration (P) or their offsprings will result in
new configurations whose associated coefficient will be proportional to s~ (rn > 1) and thus,
it diverges in the stationary state. To overcome this difficulty, we present in the next section
an alternative version of the PCCP model that avoid this divergence and, in principle, enables
us to find asymptotic results for the critical properties of the PCCP model.

4. The pair-creation contact process modified by a single creation transition

The modification consists of adding to the transition rate (2) a term of creation by single
particles similar to the ordinary contact process [1], so that the transition rate is given by

wi(m) = 3(1 = n){mi—2mizt + NiwaNisz + ¥ (it + Niv)} +an;. (24)
The operator V in equation (11) now reads V = 2(S, + yS;), where the single creation
operator S, is given by

1
S=3 > (Al = Al (Al Ay + AL A ) (25)
In the limit of y — 0, we recover the pure PCCP model.
The operator W acts over (C) according to equation (12), whereas the action of the
operator (s — V)~! is given by

rl P2
(s =V)'O) =55y i(C) +(s—V)! [Z(c;’) + 22((3;’)”

i=1 i=1

I 2
+Spy ¥ {(s —v)! [Z(c;’) + 22(@”)} } : (26)
i=1 i=1

where s, ., = (s +[p1 + pal + y[r1 + r])~!, pi and p, (are the number of empty sites with
one and two pairs of occupied neighbours, respectively, and r| and r, are the number of empty
sites with one and two occupied neighbours, respectively. The expression (C;') corresponds
to the configuration obtained by replacing a hole at site i by a particle. In contrast to the pure
PCCP, the modified PCCP does not have divergences when one takes the limit s — 0. Thus,
for configurations (P), we have that

1 .
—-V)MP)y=——1P)+ ) (P)Hy, 27
(s )()Hyb();() 27
where b is an integer number and (P/) is a configuration originated from (P) by a simple
creation process. The particular case of the vacuum (0) for which (s — V)~'(0) = 1/s5(0)
does not diverge in the stationary state limit.
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Figure 1. Critical line in the plane « versus y for the modified PCCP model by supercritical series
(circles). The dashed line is a linear extrapolation towards y = 0. For comparison, we plotted the
numerical simulation result (cross).

In the supercritical expansion the operator (s — V) ~! acting over any configuration (except
the vacuum) generates an infinite set of configurations, so it is impossible to evaluate [ (5))
in a closed form. We can evaluate, however, the ultimate survival probability P,,, which
corresponds to the coefficient of the vacuum. We define the series coefficients as

Po=1-) ai(y)'. (28)

Using a proper computational algorithm, we can calculate the coefficients up to order 23, with
values of y shown in figure 1. The limiting factor for this calculation is actually the memory
required. We attempt to obtain the critical properties of the PCCP model by performing the
numerical extrapolation y — 0, since this approach does not work in the case y = 0.

To analyse the series, we use the d-log Padé approximants approach. These approximants
are defined as ratios of two polynomials

P () _ Zf‘:o pia’
On@) 1+ gjo

In our case the function f(«) represents the series for % In Py (), for a fixed value for
the parameter y. Therefore, we are able to obtain approximants satisfying the condition
L + M < 22. One verifies that diagonal (L = M) and near-diagonal approximants usually
exhibit better convergence properties, so that we will restrict our calculations to the set of
approximants such that L = M + 6, with6 = 0, £1.

In the neighbourhood of the critical point the ultimate survival probability behaves as
P ~ (0e — )P, The critical point o, is determined by the pole of the approximant Fi y(c)
and the exponent § by the residue associated with this pole.

In figure 1 the estimates for critical points o, are depicted for different values of the
parameter . Using a linear extrapolation of these data, we obtain the estimation for the
asymptotic limit y — 0 as o, = 0.1398(7), in disagreement with the simulational result
o, = 0.1341(6) [12]. We remark that decreasing the parameter y, the dispersion of the
approximants increases and the precision of the result becomes smaller.

= f(a). (29)
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Figure 2. Exponent g for the modified PCCP model as a function of y.

The exponent £, as shown in figure 2, is in accordance with the DP universality class
value for any value of the parameter y, as expected.

However, the uncertainties on the location of the critical point put in doubt the accuracy
of the supercritical series around y & 0. In fact, what happens is that the coefficients of the
configurations (P) in the steady state behaves as

1
(s =V)'(P)~ —(P), (30)
yb

diverging as y — 0. This behaviour causes an ill-conditioned series for y ~ 0, becoming
impossible a more accurate result for the critical point in this limit.

5. Subcritical series expansion

To develop the subcritical series expansion, we rewrite the evolution operator as

S=W+A(S,+ySs), (3D

where A = o~!. Since the operator W is associated with the annihilation process and, for

small values of the parameter A, this annihilation process is favoured, this expansion describes
indeed the subcritical regime. In contrast to the supercritical case, the series here are generated
directly, without the necessity of taking the Laplace transform.

The operator W, associated with the annihilation particles process, is expressed as
W =Y W, with W, = A, — AITA,-. Each term W; has the following set of right and
left eigenvectors

10) = o), (0 = (of + (o], (32)
with eigenvalue Ay = 0 and
1) = —[o) +e), (1] = (e, (33)

with eigenvalue A = —1.
To find the steady state vector |/), that satisfies the steady condition S|y) = 0, we assume
that

W) = 1%o) + Y A1), (34)

=1
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where |1p) is the steady solution of the non-interacting term W satisfying the stationary
condition

W) = 0. (35)

The vectors |1/¢) can be generated recursively from the initial state |/). Following Dickman
[13], we get the recursion relation

[Ve) = —R(Sp + ¥ Ss) 1) (36)

The operator R is the inverse of W in the subspace of vectors with eigenvalues and is given by

1
R = b ) —— (bnl (37
n%(% An

where |¢,) and (¢,| are right and left eigenvectors of W, respectively, with the nonzero
eigenvalue A,. Since the creation of particles is catalytic, if we start from steady state of
the non-interacting term, that corresponds to the vacuum state, we will obtain a trivial steady
vector. To overcome this problem, it is necessary to introduce a modification on the rules of
the model. The necessity of changing the initial state in systems with absorbing states in order
to get nontrivial steady states has been considered previously by Jensen and Dickman [7, 14]

and more recently by de Oliveira [10].
The modification we have performed [10] consists in introducing a spontaneous creation
of particles. For the case y = 0 (pure PCCP) the creation occurs in two adjacent sites, chosen
tobei = 0 and i = 1. This modification leads to the following expression to the operator W:

W= Wi+qUo+U — Wo— W), (38)

1

where ¢ is supposed to be a small parameter and U; = Aj - A,-AIT. The steady state |) of
W is no longer the vacuum state. Now, it is given by

lYo) = 1.0.) +2¢].10.) + g*|.11.), (39)

where all sites before and after the symbol ‘.” are empty.

Two remarks are in order. First, only the last term in |1y) will give nonzero contributions
to the expansion so that |i), £ > 1, will be of the order qz. Second, although the change in
W will cause a change in R, only the terms of zero order in the expansion in g, given by the
right-hand side of equation (37), will be necessary since the corrections in R will contribute
to terms of order larger than ¢2. For instance, the two first vectors, |1/;) and |v,), for the pure
PCCP are given by

1) = ¢*{2].1.) + [.11.) + [.101) + 3[.111.)}, (40)
and
1Y) = g*{3].1) + 3.11) + 3].101.) + 3[.111.)

+32[.1001.) + 5[.1101.) + §.1011.) + 1 [.1111.)}, A1)

where the translational invariance of the system is assumed.
For y # 0, it suffices to consider the spontaneous creation in just one site. This
modifications leads to the following expression

W = Z Wi +q(Uy — Wp), (42)

1

instead of equation (38).
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Figure 3. Biased estimates of & = v (1 +n) as a function of d derived from Padé approximants
to the series (@, — «@)(d/da) In N = 6 evaluated at &, for the PCCP. The approximants shown are
[17/18],[18/17],[18/18], [18/19], and [19/18].

From the series expansion of the state vector |i), it is possible to determine several
quantities. In this paper, we will be concerned only with the series expansion for the total
number of particles N, given by

N = (.O.|Zn,~|1ﬂ). (43)

One can show that the coefficient of A* in the expansion for N is simply the coefficient of |.1.)
in |Y,). This allows us to get a longer series for the number of particles. For both modified
and pure PCCP, we have obtained a series with 38 terms.

The critical behaviour of N obeys the following relation [10]

N ~ (¢ —a)~ 10, (44)

where v and 7 are the exponents related to the time correlation length and to the growth of the
number of particles, respectively. Through an analysis of the d-log Padé approximants, such
as that performed for supercritical series expansion, we are able to calculate the critical point
and its associated exponent. Using the series for the number of particles N the values obtained
were o, = 0.1310(14) and v (1 + 1) = 2.68(15). These values do not agree with the best
estimates, o, = 0.1341(6) [12] and v (1 +n) = 2.2777305 [8]. Another estimate is obtained
by performing a non-homogeneous d-log Padé approximant [15]. Using this approach we
obtained the value a, = 0.1337(17), closer to the value obtained by numerical simulations
[12].

More reliable estimates are obtained when we determine the Padé approximants for the
series (o, —a)(d/da) In N = 0 [7, 16], called biased Padé approximants. Considering a given
Padé approximant [L/M] and a trial value of &, we develop the series above obtaining 6 (&,).
We can build curves for different Padé approximants by repeating this procedure for several
trials &. and we expect that they intercept at the critical point (o, 6 (c.)).

From figure 3 we see a very narrow intersection of the Padé approximants, revealing the
utility of this approach. However, as pointed out by Guttmann [17], it is difficult to estimate
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Figure 4. Comparative results for the modified PCCP model using supercritical (circles), subcritical
(triangles) series and numerical simulations (cross).

uncertainties in series calculations. Thus, in order to give a more realistic estimate of the
quantities measured here and their associated uncertainties, we have estimated them by taking
into account the first and last crossings among various Padé approximants. The estimate
of «, for the PCCP, o, = 0.13396(1), is in excellent agreement with the corresponding
value obtained from recent numerical simulations [12]. Finally, the exponent obtained is
v (1+n) = 2.274(3), in agreement with the best estimation of v (1+7) for the DP universality
class [8].

To stress the difference between subcritical and supercritical approaches, we have also
developed subcritical series expansion for the modified PCCP model for some values of y, as
shown in figure 4. In the limit y — 0, the subcritical approach gives o, = 0.1340(1), which
is in good agreement with the estimate o, = 0.13396(1) for y = 0 and o, = 0.1341(6)
obtained from numerical simulations [12]. On the other hand, the extrapolation for y — 0 in
the supercritical case does not lead to the correct value, as can be seen in figure 1.

6. Conclusions

In this work, we have considered the pair-creation contact process by carrying out a comparative
study between subcritical and supercritical expansions. In contrast to the contact process, the
supercritical expansion in its canonical formulation [7] is intrinsically ill conditioned for the
PCCEP. In fact, divergences in coefficients of the supercritical series occur for any model with
creation by cluster of particles. As an attempt to circumvent the divergences, we introduced
and analysed a modified version of the PCCP. However this procedure does not lead to the
correct result when one recovers the original model. It would be interesting to search an
alternative procedure to develop supercritical series for such models. We have shown here that
subcritical series expansion provides results comparable with recent numerical simulations
[12].

A natural extension of this work is the use of subcritical series to study models with
creation by clusters (pairs and triplets) and diffusion of particles [11, 12]. Results from
numerical simulations [12, 18] suggest that these models display a tricritical point. Thus this
approach, associated with an analysis by means of partial differential approximants in two
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variables, could be used to determine the existence of a tricritical point. In fact, such an
approach has already been shown to be useful for the location of a multicritical point in a
generalized contact process [16].

Acknowledgments

C E Fiore and W G Dantas thank the financial support from Fundacdo de Amparo a Pesquisa
do Estado de Sao Paulo (FAPESP) under grants no. 06/51286-8 and 05/04459-1.

References

(1]
[2]

[3]
[4]
[5]

[6]
(7]
[8]
[9]
[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

Marro J and Dickman R 1999 Nonequilibrium Phase Transitions in Lattice Models (Cambridge: Cambridge
University Press)

Privman V (ed) 1997 Nonequilibrium Statistical Mechanics in One Dimension (Cambridge: Cambridge
University Press)

Hinrichsen H 2006 Physica A 369 1

Odor G 2004 Rev. Mod. Phys. 76 663

Janssen HK 1981 Z. Phys. B 42 151

Grassberger P 1982 Z. Phys. B 47 365

Hinrichsen H 2000 Adv. Phys. 49 815

Jensen I and Dickman R 1993 J. Stat. Phys. 71 89

Jensen 11999 J. Phys. A: Math. Gen. 32 5233

Harris T E 1974 Ann. Probab. 2 969

de Oliveira M J 2006 J. Phys. A: Math. Gen. 39 11131

Dickman R and Tomé T 1991 Phys. Rev. A 44 4833

Fiore C E and de Oliveira M J 2004 Phys. Rev. E 70 046131

Dickman R 1989 J. Stat. Phys. 55 997

Jensen I and Dickman R 1994 Physica A 203 175

Reis F D A A and Rieira R 1994 Phys. Rev. E 49 2579

Dantas W G and Stilck J F 2005 J. Phys. A: Math. Gen. 38 5841

Guttman A J 1989 Phase Transitions and Critical Phenomena vol 13 eds C Domb and J L Lebowitz (New York:
Academic)

Cardozo G and Fontanari J F 2006 Eur. Phys. J. B 51 555


http://dx.doi.org/10.1016/j.physa.2006.04.007
http://dx.doi.org/10.1103/RevModPhys.76.663
http://dx.doi.org/10.1007/BF01319549
http://dx.doi.org/10.1007/BF01313803
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1007/BF01048090
http://dx.doi.org/10.1088/0305-4470/32/28/304
http://dx.doi.org/10.1088/0305-4470/39/36/001
http://dx.doi.org/10.1103/PhysRevA.44.4833
http://dx.doi.org/10.1103/PhysRevE.70.046131
http://dx.doi.org/10.1007/BF01041076
http://dx.doi.org/10.1016/0378-4371(94)90151-1
http://dx.doi.org/10.1103/PhysRevE.49.2579
http://dx.doi.org/10.1088/0305-4470/38/26/001
http://dx.doi.org/10.1140/epjb/e2006-00246-2

	1. Introduction
	2. The pair-creation contact process and operator formalism
	3. Supercritical series expansion
	4. The pair-creation contact process modified by a single creation transition
	5. Subcritical series expansion
	6. Conclusions
	Acknowledgments
	References

